Introduction

The number of MIDCAB procedures through a small left anterior thoracotomy has increased in recent years. This technique has mainly been used to anastomose the LITA to the LAD. However, it is difficult to anastomose the LITA to the distal region of a LAD through a small incision. Ideally, every patient should undergo postoperative angiography to check the quality of an anastomosis, but this is not always possible. In addition, it is unknown whether blood flow sufficient for the LAD territory is obtained by bypass grafting. Previous reports on assessment of the quality of anastomosis have indicated the use of intraoperative angiography, flow measurement, or transcutaneous ultrasound evaluation of the LITA. On the other hand, SPECT with 99m-technetium has recently permitted assessment not only of perfusion but also of ventricular function due to its use of higher energy and QGS software. However, perfusional and functional assessment and evaluation of the quality of anastomosis both before and after MIDCAB have not been reported yet.

The purposes of this study was to evaluate the perfusion and function in the LAD territory with MIBI QGS before and after MIDCAB in patients who underwent anastomosis of the LITA to the distal LAD through a small left anterior thoracotomy with the heart beating.
Patients and Methods

Patients
Between September 1998 and February 2000, forty-three patients underwent single coronary artery bypass grafting (CABG) of the LITA onto the LAD using the MIDCAB technique. Of these patients, eight who had single vessel disease of the LAD and normal sinus rhythm underwent MIBI (Cardiolite Daiichi™, Daiichi Radioisotope Laboratories, Tokyo) ECG-gated SPECT before and after MIDCAB. These patients had severe stenotic LAD with 95% to 99% stenosis. The patients’ characteristics are listed in Table 1.

Operative technique
The LITA was harvested in a pedicled fashion with a thoracoscope (Olympus, Tokyo, Japan) up to the upper margin of the first rib. Branches of the LITA were coagulated and divided. A small left anterior thoracotomy was performed in the fourth or fifth intercostal space and the distal LITA was harvested under direct vision through the thoracotomy incision. After opening of the pericardium and systemic heparinization, we transected the LITA and checked the blood flow. The internal diameters of the LITA and LAD were measured, following CABG of the LITA onto the LAD (Segment 8) using the MIDCAB technique. All anastomosis were performed using 7-0 polypropylene monofilament suture using a stabilizer. After the anastomosis, we measured the LITA graft flow and then closed the wound.

SPECT acquisition and processing
A week before and 2 months after the operation, MIBI QGS was performed to evaluate left ventricular function and coronary perfusion. Patients were injected with 4 mCi of MIBI after exercise. Image acquisition was performed 60 minutes after injection using a three-headed system (Multi SPECT 3™, Siemens Co. Ltd.). After reinjection of 12 mCi of MIBI, image acquisition was performed 90 minutes after reinjection. QGS was performed with a temporal resolution of 8 frames per R-R interval. Images were acquired with an ultrahigh-resolution parallel-hole collimator. The camera was rotated over a 120-degree orbit; and 20 projection images per head (1 min / projection) were obtained, resulting in 60 projections over 360-degrees. A 15% window centered on the 140-keV peak was used. The raw MIBI projections were processed with a two-dimensional Butterworth filter with a 0.3 cutoff and an order of 5, and reconstructed with a ramp filter.

On the other hand, two patients with unstable angina underwent only rest SPECT using 12 mCi MIBI before the operation.

Data analysis
The regional end-diastolic perfusion, regional ejection fraction (EF), regional wall thickening and global left ventricular EF were automatically calculated using a commercially available software package (ICON, Siemens Co, Ltd.). Polar maps were constructed using the maximal pixel value between the endocardial and epicardial contours. Each polar map of end-diastolic perfusion, regional EF and regional wall thickening was divided into 26 sectors: 3 rings of 8 sectors and 2 sectors for the apex. The LAD territory had 10 sectors including the apex sectors (Fig. 1). For quantification of results, we used an index in which counts in the polar maps were normalized to the maximal counts in the right coronary artery or left circumflex coronary artery territory without stenosis (<25%). The mean index of the LAD territory of the rest MIBI cardiac images was used for further analysis.

Statistical analysis
Results are expressed as mean ± standard deviation unless otherwise indicated. Statistical comparisons of two groups were performed with the paired t-test. Probability values less than 0.05 were considered significant statistically.

Results
Operation
We performed LITA - distal LAD (Segment 8) bypass using MIDCAB technique for eight patients who had...
single-vessel disease of the LAD. The diameters of the
LITA and LAD at the site of anastomosis were 1.1±0.2
mm and 1.3±0.4 mm, respectively. After bypass graft-
ing, perioperative LITA flow was 12.8±5.66 ml/min. On
the next day, we confirmed that each LITA flow of all
patients was good with a transcutaneous ultrasound. The
postoperative course was uneventful for all patients. One
of these patients underwent simultaneous replacement
of an abdominal aortic aneurysm.

Image analysis

ECG-gated MIBI SPECT was performed before and af-
fter MIDCAB. These MIBI perfusion images were read
with the gated SPECT images by two experienced ob-
servers blinded to the results of coronary angiography.
Postoperative MIBI cardiac images of all patients indi-
cated no ischemia in all regions.

For quantification of results, the counts in the polar
maps were normalized to the maximal counts in the ter-
ritories other than the LAD territory. The quantitative
and qualitative score data for end-diastolic perfusion, re-
gional EF, regional wall thickening and global left ven-
tricular EF were listed in Table 2. All indices were higher
postoperatively than preoperatively. The increase rates
were 136.3±11.7%, 148.4±6.6%, 133.0±5.6%, and
100.4±5.6%, respectively. In particular, regional EF and
regional wall thickening were significantly higher post-
operatively.

Discussion

Compared with conventional CABG, MIDCAB requires
a difficult anastomotic technique, because the LITA and
LAD of the distal portion are very small and the heart is
beating within a limited small surgical field. On the other
hand, it is unknown whether perfusion obtained is suffi-

![Fig. 1. Example of 99mTc sestamibi (MIBI) polar map.](image)

Solid sectors are the territory of left anterior descending artery (LAD). There is a known 1:1 correspondence between sectors in the polar map and sectors in the delineated left ventricular wall. The mean value of this region was used for further analysis.
LITA and LAD at the site of anastomosis were 1.1±0.2 mm and 1.3±0.4 mm, respectively. In addition to this, stress-rest MIBI SPECT indicated no ischemia in the anteroseptal wall. Therefore it appeared that MIBI ECG-gated SPECT showed sufficient perfusion of the LAD territory after MIDCAB in spite of anastomosis of small vessels in the distal portion of the LAD. Previously, it was reported that the internal mammary artery graft is a “live” conduit with potential for growth and adaptation.5,6 Though our postoperative QGS were performed two months after the operation, these indices might show even more recovery if postoperative QGS was performed a year or more after the MIDCAB.

The diagnostic accuracy of MIBI imaging for detection of coronary artery diseases has been shown to be comparable to that with Tc-99m.47 The higher count rates obtained with MIBI allow image acquisition in a gated frame mode and analysis of regional and global ventricular function. ECG-gated SPECT using MIBI can evaluate not only perfusion but also function in regions of interest.41 In addition, MIBI myocardial perfusion imaging with exercise testing provides important prognosis information. Normal MIBI cardiac imaging predicts a very low cardiac event rate.10-12 Therefore this technique is very useful for evaluating left ventricular perfusion and function before and after MIDCAB.

Findings of MIBI QGS assessment can predict whether anastomoses are both patent and non-restrictive, limiting the requirement for postoperative angiography. In conclusion, even if anastomosis of the LAD and LITA with MIDCAB technique is performed in the distal portion, regional perfusion and regional function in the territory of the LAD are improved. MIBI QGS assessment is a reliable technique for follow-up of patients who have undergone MIDCAB. With it, the requirement for postoperative angiography will be reduced, costs will be contained, and patient comfort will be increased.

Acknowledgment

We gratefully thank Ms. Etsuko Murakami and Mr. Hirokazu Okada for their technical assistance.

References