Cardiac Operations in Cirrhotic Patients

Nobuhiko Hayashida, MD, and Shigeaki Aoyagi, MD

It is well recognized that morbidity and mortality rates after cardiac operations with cardiopulmonary bypass in patients with cirrhosis are significantly higher than those in the general cardiac surgical population. Several contributing factors peculiar to cirrhosis, such as compromised nutritional status, increased susceptibility to infections, and impaired coagulopathy, may be responsible for the poor prognosis. It is empirically agreed that cardiac operations using cardiopulmonary bypass are contraindicated in patients with advanced cirrhosis. However, the population of cirrhotic patients who are referred for cardiac operations is still small and definitive indications for surgical interventions remain unknown. Moreover, cirrhotic patients have many distinctive anatomical and physiological features that influence postoperative course considerably. In this article, we reviewed the literature with special reference to its clinical features and clinical outcomes after cardiac surgery that would help cardiac surgeons to decide therapeutic modality. Further understanding of the unique condition, careful patient selection and intensive postoperative care are required to improve the clinical outcome in cirrhotic patients undergoing cardiopulmonary bypass. Recent developments in minimally invasive procedures, such as off-pump coronary artery bypass grafting, however, may enable us to treat patients with advanced cirrhosis safely. (Ann Thorac Cardiovasc Surg 2004; 10: 140–7)

Key words: comorbidity, cirrhosis, morbidity and mortality, indication

Introduction

As surgical techniques and postoperative patient care improve, the number of patients with advanced age and significant preoperative comorbidities who are referred for major surgery is increasing. Among the coexistent disorders, cirrhosis is still a challenging clinical problem in surgical patients. Because of the compromised health status in cirrhotic patients, their postoperative clinical results are unsatisfactory. Particularly in the cardiac surgical field, postoperative morbidity and mortality rates remain significantly high in such patients. It is generally agreed that several factors peculiar to cirrhosis rather than cardiac disorders are responsible for the disappointing results and the surgical prognosis correlates with the severity of cirrhosis. Because patients with cirrhosis have distinctive anatomical and physiological disorders that influence their perioperative course substantially, further understanding of the features may modulate the current surgical results. Moreover, because the population of cardiac surgical patients with this comorbidity is small and few reports have explored clinical results, definitive recommendations and indications for cardiac surgery are still unknown. Accordingly, accumulation of cases and detailed evaluation of clinical results in cardiac surgical field are mandatory for the decision of therapeutic strategies and for the improvement of clinical results in cirrhotic patients.

Pathogenesis and Epidemiology

Cirrhosis is the end result of hepatocellular necrosis induced by diverse causes, such as hepatitis viruses, alcoholism, autoimmune disease, prolonged cholestasis, meta-
bolic disorders, and cardiogenic congestion and ischemia. Inflammatory process initiated by hepatocellular necrosis stimulates the deposition of collagen around hepatocytes and in sinusoidal membranes, with resulting profound alteration in hepatocyte function and hepatic blood flow. The altered hepatic architecture and perisinusoidal fibrosis cause increased hepatic vascular resistance, resulting in portal hypertension and its associated complications of variceal hemorrhage, encephalopathy, ascites, and hypersplenism. Fully developed cirrhosis is progressive and irreversible with currently available therapy. Although racial and ethnic differences exist, chronic hepatitis B and C viral infection and alcoholism are the most common causes of cirrhosis worldwide. Several epidemiologic studies have shown that approximately 4 million persons in the United States and probably more than 170 million persons worldwide (3%) are infected with hepatitis C virus. Various studies have suggested that 3% to 20% of chronically infected patients develop cirrhosis. Especially in the Asian countries, cirrhosis and hepatocellular carcinoma caused by hepatitis viruses are highly prevalent.

The expansion of alcohol consumption and the liberalization of drinking norms during the post-World-War II eras have had a profound impact on medical and health interpretations of the role of alcohol use in liver disease. It is widely believed that alcohol abuse and hepatitis C virus infection frequently coexist and they act synergistically to promote the development and progression of liver damage. Moreover, recent studies have shown that the incidence of nonalcoholic fatty liver disease is increasing because of the inexorable rise in the prevalence of obesity and diabetes mellitus. The prevalence of the disease has been estimated to be 24% of the entire U.S. population. The disorder in some patients leads to progressive hepatic fibrosis and eventually cirrhosis. Advanced liver disease, therefore, is still a major health problem worldwide.

Congestive heart failure due to myocardial infarction, cardiomyopathy, rheumatic heart disease, congenital heart disease with left to right shunt, or constrictive pericarditis increases hepatic venous pressure and decreases hepatic blood flow, with resulting congestive liver fibrosis and cirrhosis. Multiple medications for cardiac disorders and blood transfusion during prior cardiac surgery may also compromise liver function. Accordingly, a close association between cardiac and hepatic disorders exists and we often encounter patients with liver dysfunction in the cardiac surgical field. The frequency of end-stage liver disease, i.e., cirrhosis in patients who are referred for cardiac surgery, however, is considerably low because of their compromised health status and decreased life expectancy. In a recent study, the incidence of cirrhotic patient who underwent cardiac operations was reported to be 0.27%. Evaluation of Patients with Cirrhosis

Key aspects of the evaluation of cirrhotic patients in the surgical setting are the following: (1) estimation of hepatic functional reserve, (2) identification of coexisting anatomical and physiological disorders associated with portal hypertension. It is well known that cirrhosis is often accompanied by anemia, leukopenia, and thrombocytopenia secondary due to poor nutritional status, bleeding from varices, and hypersplenism. Impaired coagulopathy manifested by a prolonged prothrombin time is also seen in cirrhotic patients because many of the coagulation factors are synthesized by the liver and because primary fibrinolysis is prominent. Lower serum levels of cholinesterase, a hepatocyte secretion enzyme, represent impaired hepatic protein synthesis. Hypoalbuminemia and low albumin to globulin ratio also are reliable indices of malnutritional status and reduced hepatic functional reserve. Bilirubinemia of greater than 3.0 mg/dL is indicative of hepatic decompensation and the levels correlate with the mortality in patients with cardiac failure requiring left ventricular assist device. Serum levels of hyaluronate, procollagen III N-terminal propeptide and type IV collagen are sensitive markers of hepatic fibrosis. Because of the presence of portosystemic collaterals, ammoniemia, a cause of hepatic encephalopathy, is often observed in cirrhotic patients.

An indocyanine green (ICG) clearance test, that reflects the hepatic uptake clearance, is useful for assessing hepatic functional reserve. The decrease in ICG clearance has been shown to be a prognostic index of survival in cirrhotic patients and to predict poor clinical outcomes after hepatic resection and cardiac surgery. Scintigraphy of diethylenetriamine pentaacetic acid-galactosyl human serum albumin, an analog ligand to asialoglycoprotein receptors, also provides invaluable information with regard to functioning hepatocyte mass.

Percutaneous liver biopsy is a useful technique for establishing the diagnosis and cause of cirrhosis, and for assessing its severity. However, because of recent advances in diagnostic technologies, such as laboratory tests above-mentioned and imaging tools, and because of bleed-
The Child-Pugh classification is based upon clinical and laboratory criteria to assess long-term prognosis and mortality after cardiovascular surgery in cirrhotic patients. The criteria include ascites, hepatic encephalopathy, variceal bleeding, serum bilirubin level, serum albumin level, prothrombin time, and platelet count. The score is calculated by summing the scores for these factors, with a score of 5 to 6 considered Child class A, 7 to 9 considered Child class B, and 10 to 15 considered Child class C. The mortality rate for Child class A is approximately 5%, for Child class B is approximately 50%, and for Child class C is approximately 100%.

<table>
<thead>
<tr>
<th>Classification</th>
<th>Child-Pugh</th>
<th>Child</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morbidity</td>
<td>Class A</td>
<td>Class B</td>
</tr>
<tr>
<td>Class A</td>
<td>25%</td>
<td>100%</td>
</tr>
<tr>
<td>Class B</td>
<td>50%</td>
<td>100%</td>
</tr>
<tr>
<td>Class C</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mortality</th>
<th>Class A</th>
<th>Class B</th>
<th>Class C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A</td>
<td>0%</td>
<td>80%</td>
<td>–</td>
</tr>
<tr>
<td>Class B</td>
<td>0%</td>
<td>50%</td>
<td>–</td>
</tr>
<tr>
<td>Class C</td>
<td>0%</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Clinical Outcomes after Cardiovascular Surgery

Mortality after cardiovascular surgery
Clinical outcomes after cardiac operations in cirrhotic patients reported in the recent literature are summarized in Table 1. The consensus of opinion among these clinical studies is that patients with mild cirrhosis (Child class A cirrhosis) tolerated cardiac operations satisfactorily. Patients with more advanced cirrhosis (Child class B or C cirrhosis), however, had a significantly higher mortality rate (50-100%) after cardiopulmonary bypass. Moreover, Bizouarn and colleagues have demonstrated that the health status remained compromised even well after the operation because of persistent hepatic dysfunction. Accordingly, it is generally agreed that elective cardiac operations using cardiopulmonary bypass are contraindicated in patients with moderate to severe cirrhosis. Even in cases of emergency, a decision of therapeutic strategy should be made carefully on the basis of the individual life expectancy considering cardiac and hepatic disorders.

Clinical Outcomes after Cardiovascular Surgery

Morbidity and Mortality after Cardiac Operations in Cirrhotic Patients

<table>
<thead>
<tr>
<th>Classification</th>
<th>Child-Pugh</th>
<th>Child</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morbidity</td>
<td>Class A</td>
<td>Class B</td>
</tr>
<tr>
<td>Class A</td>
<td>25%</td>
<td>100%</td>
</tr>
<tr>
<td>Class B</td>
<td>50%</td>
<td>100%</td>
</tr>
<tr>
<td>Class C</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mortality</th>
<th>Class A</th>
<th>Class B</th>
<th>Class C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A</td>
<td>0%</td>
<td>80%</td>
<td>–</td>
</tr>
<tr>
<td>Class B</td>
<td>0%</td>
<td>50%</td>
<td>–</td>
</tr>
<tr>
<td>Class C</td>
<td>0%</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

CPB, cardiopulmonary bypass.
and the long-term result remains unknown. Further investigations, therefore, are required for the universal application of this technique in advanced cirrhosis. If the use of cardiopulmonary bypass is deemed unavoidable, the duration should be minimized by means of the most simple and expeditious surgical procedure.

Postoperative complications and management

Although the mortality rates after cardiac operations are relatively low in patients with mild cirrhosis, the incidence of postoperative major complications is strikingly high.\(^5\) The operative morbidity rates for Child classes A, B, and C cirrhosis have been shown to be 25% to 50%, 100%, and 100%, respectively.\(^5\) Common characteristics of postoperative complications in cirrhosis included infections, excessive mediastinal bleeding, gastrointestinal disorders, hepatic and renal failure, and fluid retention characterized by ascites, pericardial effusion, and pleural effusion. It seems probable that the majority of these complications are attributable to the clinical and pathophysiological features of cirrhosis rather than impaired cardiac function.

The incidence of severe infections, such as mediastinitis and septicemia, has been reported to be 25% to 33%.\(^5\) Although the cause of the increased susceptibility to infections is not evident at present, alteration of immune function, poor nutritional status and the higher incidence of reexploration for bleeding in cirrhosis may account for the results. Several epidemiologic studies have shown that infection remains a leading cause of death among hospitalized cirrhotic patients.\(^49\)\(^\)\(^-\)\(^52\) The higher prevalence of infections is accounted for by decreased reticuloendothelial function and impairment of several components of cell-mediated and humoral immunity.\(^51\)

Urinary tract infections, spontaneous bacterial peritonitis, respiratory tract infections, and bacteremia are the most frequent bacterial infectious complications seen in these patients and the prevalence increases with advancing clinical stage of cirrhosis.\(^49\)\(^,\)\(^53\) It has been demonstrated that between 20% and 50% of cirrhotic patients develop these infections during hospitalization and most bacterial infections are hospital-acquired.\(^49\)\(^,\)\(^53\) Logistic regression analysis in a recent prospective study has identified admission for gastrointestinal bleeding and a low serum albumin as independent risk factors for development of bacterial infections.\(^50\) As prophylactic treatment in cirrhotic patients against bacterial infections, selective intestinal decontamination with norfloxacin has been used. Its efficacy in reducing the risk of gram-negative Escherichia coli and streptococci, which are the most common types of infecting organism, have been reported.\(^51\)\(^,\)\(^54\)\(^,\)\(^55\) In cirrhotic patients developing bacterial infections, third-generation cephalosporins are currently advocated because of their high level of intrinsic activity against the pathogens as well as their safe use at high doses.\(^51\)\(^,\)\(^56\)

However, the emergence of pathogens resistant to those regimens and severe hospital-acquired staphylococcal infections, especially with methicillin-resistant Staphylococcus aureus, has recently been observed in cirrhotic patients undergoing prophylaxis.\(^51\)\(^,\)\(^54\)\(^-\)\(^57\) In addition to the markedly high prevalence of infections in cirrhosis per se, cardiac surgical patients are subject to profound surgical invasiveness, endotoxemia and impairment in immune function, especially when cardiopulmonary bypass is used.\(^58\)\(^-\)\(^60\) Once major infectious complications develop after cardiac procedures in cirrhotic patients, the mortality rate is miserably high. Therefore, meticulous perioperative management of infections by means of screening the carriage of pathogens, early diagnosis, and administration of antibiotics and immune globulins, are mandatory for the prevention of the disastrous complications. Our protocol of prophylactic treatment for cirrhotic patient is as follows. Cefazolin sodium hydrates (1,000 mg) is given intravenously before skin incision, in the cardiopulmonary bypass priming solution and every 6 hours in the first 24 hours after surgery. Its administration (twice a day) is continued at least for five days after surgery. Polyeptylene glycol treated human normal immunoglobulin (2,500 mg) is also given twice a day for three days.

Hemorrhagic complication is a major concern in cirrhotic patients undergoing surgical interventions because complicated coagulopathy due to thrombocytopenia, platelet dysfunction, reduced coagulation factors, and fibrinolysis is frequently observed.\(^51\)\(^,\)\(^61\)\(^,\)\(^62\) The condition may be further aggravated by the hematological derangement inherent with cardiopulmonary bypass.\(^63\)\(^,\)\(^65\) Hypothermia and hemodilution during cardiopulmonary bypass may also influence the coagulopathy. Excessive mediastinal bleeding requiring reexploration occurred in up to 31% of cirrhotic patients undergoing cardiac surgical procedures.\(^58\) Chest tube drainage and transfusion requirements in those patients are reported to be three times higher than those in the standard cardiac surgical population.\(^57\) Bizouarn and colleagues\(^67\) have shown that the use of high-dose aprotinin provided beneficial effects on hemostasis even in such patients. In the report, however, late cardiac tamponade probably due to minor mediastinal bleeding
after surgery occurred in 17% of their patients. Therefore, meticulous surgical hemostasis and optimization of coagulopathy by means of administration of pharmacological agents, such as vitamin K, tranexamic acid, and antifibrinolytics, are essential for the reduction of blood loss and transfusion requirements. Bleeding from esophagogastric varices is also a major postoperative complication in cirrhotic patients. Variceal hemorrhage occurred in approximately 10% to 20% of cardiac surgical patients. It appears that the incidence of this complication increases with the advance of cirrhotic status. Preoperative evaluation with endoscopy and eradication of varices by endoscopic sclerotherapy if present are necessary, especially in patients with a history of variceal hemorrhage or with moderate to severe cirrhosis.

Further deterioration of liver function that is already compromised in cirrhosis after cardiac surgery is of great concern. In patients with normal preoperative liver function, 1% to 3% of patients undergoing cardiac surgical procedures developed liver dysfunction, defined as the presence of jaundice or the elevation in alanine aminotransferase levels. Postoperative liver dysfunction was associated with higher morbidity and mortality. Although the pathogenesis is multifactorial, liver cell damage due to decreased hepatic blood flow during cardiopulmonary bypass seems to be fundamental. Hepatic hemodynamics are characterized by a dual supply of blood from the hepatic artery and the portal vein. The portal vein contributes two thirds of the total hepatic blood flow, while hepatic arterial perfusion accounts for over one half of the liver’s oxygen supply. As hepatic portal perfusion decreases as a result of increased portal venous resistance, hepatic arterial flow increases by its autoregulatory or buffer response. Therefore, the hepatic artery plays an important role in hepatic blood supply in cirrhosis. An experimental study, that evaluated hepatic circulation and oxygen metabolism during cardiopulmonary bypass, has demonstrated that total hepatic blood flow and oxygen delivery decreased during cardiopulmonary bypass and the decreases were more marked with a larger dose of fentanyl. Hepatic arterial blood flow, however, did not change during normothermic cardiopulmonary bypass with a lower dose of fentanyl, whereas it decreased significantly during hypothermic cardiopulmonary bypass. Accordingly, normothermic cardiopulmonary bypass with a lower dose of fenatynl anesthesia may be advanta-
Recommended Cardiac Surgical Approaches in Cirrhotic Patients

On the basis of our experience of 18 patients, together with the previous clinical results in cirrhotic patients, our recommendations and indications for cardiac operations are summarized in Table 2. Although postoperative morbidity rates are high, all patients with mild cirrhosis (Child-Pugh class A) can be candidates for cardiac surgery irrespective of the use of cardiopulmonary bypass. In patients with more advanced cirrhosis (Child-Pugh classes B and C), however, postoperative mortality is unacceptably high and this patient subgroup may not be suitable for elective cardiac operations with cardiopulmonary bypass. Especially in the emergency cases, a clear need for an operation that transcends the poor prognosis after cardiopulmonary bypass must exist. Although definitive studies involving more patients are required, recent developments in minimally invasive procedures, such as off-pump CABG, may enable us to treat patients with advanced cirrhosis safely.

Acknowledgments

This work was supported in part by the Grant-in-Aid for Encouragement of Young Scientists, Japan Society for the Promotion of Science (grant A-14770696) and Grant-in-Aid for Scientific research (grant C-15591505 and grant C-14571290), Japan.

References

