Ultrasonic Plaque Density of Aortic Atheroma and Stroke in Patients Undergoing On-pump Coronary Bypass Surgery

Hideaki Nohara, MD,1 Tsutomu Shida, MD,2 Nobuhiko Mukohara, MD,2 Hidefumi Obo, MD,2 and Tetsuya Higami, MD3

Objective: The purpose of this study was to determine the relationship between the aortic atheromatous plaque echo density and the incidence of postoperative stroke or embolic events in patients undergoing on-pump coronary artery bypass grafting (CABG).

Patients and Methods: Three hundred and fourteen patients who received on-pump CABG alone were studied. Images of the aortic plaques obtained using transesophageal echocardiography were transferred to a computer. Using an image analysis program, a histogram for plaques more than 3 mm in thickness was obtained through the gray tone frequency distribution of the pixels (0-225). The gray scale median (GSM) was used as a measure of plaque echo density.

Results: Fifty-eight plaques in patients not associated with postoperative stroke or embolic events had GSM ranging from 58 to 241 (151.0±38.2), while 9 plaques in patients associated with stroke or embolic events had GSM ranging from 67 to 130 (90.6±21.3, p<0.001). The incidence of stroke or embolism was 58.3% when GSM of plaque was less than 100, while it was 3.6% when plaque GSM was more than 100 (p<0.001).

Conclusion: This study indicated that computer analysis of aortic atheromatous plaque was useful for selecting patients who had a high risk of postoperative stroke or embolism when receiving on-pump CABG, and for decreasing the incidence of them. (Ann Thorac Cardiovasc Surg 2004; 10: 235–40)

Key words: on-pump coronary artery bypass grafting, postoperative stroke or embolism, aortic atheromatous plaque echo density

Introduction

The importance of the aorta as an embolic source has been emphasized in patients receiving coronary artery bypass grafting (CABG). In the last eight to 10 years, there have been many reports about perioperative stroke that is related to the atheromatous disease of the aorta, and is evaluated using epiaortic or transesophageal echocardiography. The detailed high-resolution images of the atherosclerotic aortic wall can be obtained during operation by employing B-mode technique. To prevent emboli, many cardiac surgeons have investigated the presence of a diseased ascending aorta, and assessed aortic arch atheroma that is also a risk factor of embolism.

In many reports, a similar correlation between configuration or thickness of the atheromatous intima and perioperative embolic events is demonstrated, but neither morphological characteristics of atheromatous plaque or precise characteristics of the atheromatous plaque have been clarified yet. The purpose of this study was to determine the relationship between ultrasonic plaque density and immediate outcome after on-pump CABG, and to identify fragile aortic plaque that might cause embolic events.
Between January 1997 and December 1999, 426 patients undergoing isolated CABG for coronary artery diseases were studied retrospectively. Eighty-six patients who could not receive transesophageal echocardiography (TEE) for some reason and 26 patients who underwent off-pump CABG because of severe atherosclerotic or calcified findings of the ascending aorta, which prevented cannulation or placement of cross clamp, were excluded from this study. Consequently, data of 314 patients who underwent on-pump CABG were analyzed. Patient demographics are shown in Table 1. One hundred and forty-two patients underwent preoperative magnetic resonance angiography (MRA) to identify severe stenosis at the carotid or intracranial arteries. Postoperative cerebral infarction was diagnosed by a neurologist, and confirmed using a brain computed tomography scan. Acute arterial embolic events of the visceral organ or leg arteries were identified based on clinical signs, enzyme elevation and findings of exploratory operation. Plaque echo density of the aortic arch could not be measured in 24 patients because recorded TEE images were lost.

Methods

Transesophageal echocardiography

After general anesthesia, a biplane or multilane 3.5 MHz transesophageal transducer was placed in position to view the thoracic aorta. Aortic arch scan was performed using Hewlett-Packard 77030A and Sonos 5500 (Hewlett-Packard, Palo Alto, CA, USA) color flow duplex scanner. All images were recorded for the subsequent playback evaluation. We assessed the distribution of atherosclerotic lesions of the entire thoracic aorta, and atheromatous lesions of the aortic arch on TEE were graded morphologically as follows: grade 1, normal or thickening of the intima extending less than 3 mm into the aortic lumen; grade 2, smooth-surfaced plaques and thickening of the intima extending more than 3 mm into the aortic lumen; grade 3, marked irregularity of the intimal surface and thickening of the intima extending more than 3 mm into the aortic lumen; grade 4, plaque with a mobile element.

Plaque echo density

In the presence of atheromatous plaque of grades 2, 3 and 4, we measured echo plaque density through computer analysis. Once the best available image of the aortic plaque was identified, it was recorded on video and the still image was digitized off-line on a personal computer using a commercially available video-grabber card. By means of Adobe Photoshop® (version 5.0, Adobe Systems Incorporated, San Jose, CA, USA) software, the digitized images were normalized by using linear scaling and two reference points of blood and adventitia. The GSM of the lumen (blood) part was assigned to a gray level of 0 to 5. GSM of the adventitia part was assigned to a gray level of 180 to 190, and the image was normalized by performing linear scaling with the “curves” option of the software. The gray tone frequency distribution of the pixels in the plaque was provided by the “histogram” facility of Adobe Photoshop®, and GSM of the plaque pixels was obtained and used as a measure of plaque echo density (Fig. 1).

Operative technique

After median sternotomy and harvest of the grafts, the typical end-hole arterial cannula (Research DF II 22Fr or 24Fr, Research Medical Inc., Midvale, UT, USA) at the ascending aorta and bicaval venous drainage was placed. Cardiopulmonary bypass was initiated, the aorta was cross-clamped, and myocardial protection was performed with retrograde continuous administration of cold-blood cardioplegia. In patients who had severe stenosis of carotid or intracranial arteries, CABG was carried out by the super pulse cardiopulmonary bypass (CPB) method that enabled maintenance of our original dynamic pulsatile flow of 3.0 to 3.5 L/min/m², mean arterial pressure of 70 to 80 mmHg and normothermia (35°C to 36°C). At the time of clamping and declamping, the CPB perfusion...
statistical analysis
Continuous variables are presented as mean ± standard deviation. Welch’s test and chi square test were used. The statistical calculation was performed using statistical package software, Microsoft Excel® (version 10.1, Microsoft Corporation, Redding, WA, USA) and StatView® (version 5.0, SAS Institute Inc., Cary, NC, USA) for Macintosh. P values of less than 0.01 were considered to be statistically significant.

Results
Clinical outcomes are summarized in Table 2. Postoperative stroke or embolic complications occurred in 11 patients including two patients who simultaneously developed brain and multiple organ embolism. On the other hand, preoperative MRA revealed that 29 patients had severe carotid or intracranial artery diseases with more than 90% of stenosis, and they underwent CABG with our original warm dynamic pulse extracorporeal circulation with no occurrence of stroke. Incidence of stroke or embolic events according to TEE plaque morphology in the aortic arch is shown in Table 3. In 223 patients with grade 1 of TEE findings, no perioperative stroke or embolic episode occurred. However, there were a total of 11 (12.1%) strokes or embolism in 91 patients with plaque that was more than 3 mm in thickness, had irregular surface or was mobile.

Plaque echo density of the aortic arch in 67 patients whose TEE findings were greater than grade 2 and recorded on videotape was analyzed in a computer using the parameter of GSM. The relationship between plaque GSM and stroke or embolic event is shown in Fig. 2. Fifty-eight plaques in patients not associated with stroke or embolic events had GSM ranging from 58 to 241 (151.0±38.2), while 9 plaques in patients associated with...
stroke or embolic events had GSM ranging from 67 to 130 (90.6±21.3, p<0.001). Figure 3 shows GSM values of the aortic plaque according to the TEE morphological grading compared between patients with stroke or embolism and those without. For the purpose of analyzing the results, an arbitrary cut off point of 100 in GSM was taken to investigate if separation of stroke or embolic events could be seen. The incidence of stroke or embolism was 58.3% when plaque GSM was less than 100, while it was 3.6% when plaque GSM was more than 100 (Table 4, p<0.001, with Fisher’s exact method).

Discussion

The risk of stroke in patients undergoing coronary artery bypass surgery is reported to be 2% to 4%. 2-5 Perioperative embolic complications of the central nervous system and body are one of the most important causes of morbidity and mortality associated with on-pump CABG. The cause of perioperative stroke in patients undergoing on-pump CABG is multifactorial, but is considered to include two major important factors. One is severe stenosis of the carotid or intracranial arteries, which causes hypoperfusion of the brain during CPB. 6 The other is atheromatous embolism resulting in the diseased aortic debris being dislodged by using CBP. 7,8 In an autopsy series of patients suffering early postoperative deaths, Blauth et al. report that the evidence of atheroemboli is found in 48 (21.7%) of 221 patients and the brain is the most commonly involved organ. 7 In our study, preoperative MRA screening was performed in 45.2% patients undergoing CABG to identify severe stenosis. Although 29 patients (20.4%) had severe stenosis of greater than 90%, they did not suffer cerebral infarction when our original dynamic pulsatile CPB was employed. Our original dynamic pulse method was contraindicated for patients in whom friable plaque was observed in the ascending aorta or arch, because the jet type blood flow induced by this method might scatter debris to the systemic circulation. 1 All 29 patients who underwent the dynamic pulse method had grade 1 plaques on TEE examination. Many previous reports have suggested that the diseased ascending aorta is a main risk factor of stroke. 9-11 In our strategy, the patients whose atheromatous ascending aorta was detected by epiaortic echography underwent off-pump CABG to avoid any direct manipulation of the ascending aorta. Although we excluded the patients with these diseased ascending aorta from this study, cerebral infarction occurred in 2.6% patients. Katz et al. describe that the high-pressure jet emanating from the cannula tip may break down the fragile atheromatous plaque of the aortic arch. 12 Weinstein suggests that end-hole aortic cannulas, which produce a single high velocity jet at the left carotid orifice, are responsible for a strong predominance of left hemispheric strokes in on-pump CABG. 13 Some studies have been performed

<table>
<thead>
<tr>
<th>TEE grade</th>
<th>The number of patients</th>
<th>Percentage</th>
<th>Stroke</th>
<th>Other embolic events (simultaneous to stroke)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1</td>
<td>223</td>
<td>(71%)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Grade 2</td>
<td>59</td>
<td>(19%)</td>
<td>1</td>
<td>2 (1)</td>
</tr>
<tr>
<td>Grade 3</td>
<td>20</td>
<td>(6%)</td>
<td>4</td>
<td>2 (1)</td>
</tr>
<tr>
<td>Grade 4</td>
<td>12</td>
<td>(4%)</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

TEE, transesophageal echocardiography.
to clarify the vulnerable plaque of the atheromatous aorta that may be broken down by the CPB arterial jet flow. Ribakove et al. propose a grading scale of 1 to 5 for atheromatous disease of the aorta, although their morphological classification is obscure and not objective.14) Mizuno et al. measure intimal thickness for quantitative analysis, and suggest that intimal thickened to more than 5 mm is at a significantly high risk of stroke.15) Nevertheless, measurement of intimal thickness is changeable by rotating the probe at the level of the arch, and it is difficult to define the plaque characteristics.

Plaque echo density

This study indicated that the plaque which caused a high risk of postoperative stroke or embolism could be identified by analyzing the aortic plaque echo density. In patients with carotid bifurcation disease, several investigators have shown that hypoechoic plaques are associated with a higher incidence of transient ischemic attacks and brain infarction than hyperechoic ones.16-20) It has been suggested that hypoechoic, lipid rich plaques are associated with an increased risk of stroke or embolism because they are vulnerable to rupture. el-Barghouty et al. measure plaque echogenicity on B-mode ultrasound by estimating the median of the gray scale content through computer image analysis to achieve accurate plaque characterization.18) In the study by Sabetai et al. computer-assisted plaque characterization with B-mode image normalization by means of digital image processing has been proposed to be a reliable method for the objective and quantitative assessment of carotid plaque echo morphology.20) In our study, it was confirmed that hypoechoic plaques (GSM of less than 100) were associated with a higher incidence of perioperative stroke or embolic events. It has been suggested that echolucent plaques (that are black-colored and have lower GSM on B-mode imaging)
are associated with a higher content of lipids, thin fibrous cup and thrombus attachment, while echogenic plaques (that are white-colored and have higher GSM on B-mode imaging) contain a larger amount of fibrous tissue and calcium deposition. This is probably because echolucent plaques are more prone to rupture and more emboli than echogenic plaques. The use of on-pump or off-pump procedure for CABG candidates depends on the surgeon’s technical level. However, the surgeon’s decision-making remains the most important factor contributing to the outcome of the operation when TEE reveals echolucent atheromatous aortic plaque in patients preparing on-pump CABG. Our data suggest that there should be no hesitation in converting the operation from on-pump to off-pump CABG if the aortic plaque density (GSM) is less than 100. This identification of plaques at high risk of embolism in converting the operation from on-pump to off-pump CABG could be used for selecting patients who were subject to undergoing off-pump procedure and for decreasing the incidence of postoperative stroke or embolism.

In conclusion, our findings suggested that it was very important to detect the fragile atheromatous plaque of the aortic arch that might be broken down by the arterial jet flow for cardiac surgeons who determined the strategy to avoid embolic complications in on-pump CABG patients.

References