FDG-PET Imaging for Lymph Node Staging and Pathologic Tumor Response after Neoadjuvant Treatment of Non-small Cell Lung Cancer

Takashi Ohtsuka, MD, Hiroaki Nomori, MD, Akinori Ebihara, MD, Ken-ichi Watanabe, MD, Masahiro Kaji, MD, Tsuguo Naruke, MD, Keiichi Suemasu, MD, and Kimichi Uno, MD

From Departments of 1Thoracic Surgery and 2Internal Medicine, Saiseikai Central Hospital, and 3Nishidai Clinic, Tokyo, Japan

Received August 29, 2005; accepted for publication September 12, 2005.
Address reprint requests to Takashi Ohtsuka, MD: Department of Thoracic Surgery, Saiseikai Central Hospital, 1-4-17 Mita, Minatoku, Tokyo 108-0073, Japan.

Purpose: A number of studies have demonstrated that 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is effective for staging of lung cancer. However, the efficacy of FDG-PET for staging lung cancer after neoadjuvant treatment is still controversial. This study compared FDG-PET and computed tomography (CT) for lung cancer staging, and evaluated the ability of the two methods to predict the pathologic response of the primary tumor to neoadjuvant treatment.

Patients and Methods: Twenty-two patients who underwent neoadjuvant treatment followed by surgery were investigated. Eighteen patients received chemoradiotherapy and four patients received chemotherapy only. One hundred and three lymph node stations in the 22 patients were evaluated by FDG-PET and CT. The pathologic responses of the tumors were compared by FDG-uptake and tumor size on CT for the 15 patients who underwent FDG-PET and CT both before and after neoadjuvant treatment.

Results: There was no significant difference in the ability of FDG-PET or CT to predict residual viable tumor. Although positive predictive value by FDG-PET (0.29) was lower than that by CT (0.64) (p=0.04) in the mediastinal lymph nodes, there were no statistically significant differences in the other results of lymph nodes by FDG-PET and CT. Both decrease in FDG-uptake and decrease in tumor size by CT after neoadjuvant treatment correlated significantly with pathologic response in the 15 patients (p=0.003 and 0.009, respectively).

Conclusion: FDG-PET did not appear to offer any advantages over CT for lymph node staging or for predicting the pathologic response after neoadjuvant treatment of non-small cell lung cancer. (Ann Thorac Cardiovasc Surg 2006; 12: 89–94)

Key words: lung cancer, positron emission tomography, neoadjuvant treatment, pathologic response

Introduction

It is generally accepted that multimodal therapy should be used for the treatment of locally advanced non-small cell lung cancer. Neoadjuvant treatment followed by surgery is one type of multimodal therapy used for locally advanced non-small cell lung cancer. Several studies have demonstrated that 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is effective for staging of lung cancer. However, the staging of lung cancer after neoadjuvant treatment remains difficult. This study was undertaken to evaluate the usefulness of FDG-PET for staging and predicting the pathologic tumor response to neoadjuvant treatment in 22 patients with non-small cell lung cancer, in comparison with the results of
Computed tomography (CT).

Patients and Methods

Between December 2001 and September 2004, whole-body FDG-PET and CT scans of the chest were undertaken after induction treatment in 22 patients with biopsy-proven lung cancer. Of the 22 patients, 15 underwent FDG-PET and CT both before and after neoadjuvant treatment and the other seven patients underwent FDG-PET only after neoadjuvant treatment. The characteristics of the patients are shown in Table 1. There were 18 men and four women with a mean age of 61 years (range: 36-74 years). Preoperative chemotherapy was administered to all patients. Sixteen patients were administered carboplatin and vinorelbine, two were given carboplatin and docetaxel, two received carboplatin and paclitaxel, and one patient each received cisplatin and CPT-11, and carboplatin and gemcitabine. The mean number of courses was 2.3 (range: 1-6). Four patients received chemotherapy only, and 18 received both radiotherapy and chemotherapy. Seventeen patients received 30 Gy of chest irradiation and one patient received 60 Gy. The time interval between the end of neoadjuvant treatment and FDG-PET was a median of 1.6 months (range: 1-11 months). All patients underwent pulmonary resection and systematic thoracic lymph node dissection. The lymph node stations were classified according to the original lymph node map of lung cancer.6 The pathologic diagnosis of 103 lymph node stations (N1=24, N2=72, N3=7) in the 22 patients was compared by lymph node staging with FDG-PET and CT.

FDG-PET scanning and data analysis

Patients were instructed to fast for at least 4 hr prior to intravenous (IV) administration of 18F-FDG. The administered dosage of 18F-FDG was 125 μCi/kg (4.6 MBq/kg) body weight for non-diabetic patients and 150 μCi/kg (5.6 MBq/kg) body weight for diabetic patients. PET imaging was performed approximately 60 min after IV administration of FDG using a POSICAM.HZL mPOWER (Positron Corp., Houston, Texas, USA). No-attenuation-corrected emission scans were initially obtained in two-dimensional, high-sensitivity mode for 4 min per bed position, and taken from the skull to the thighs. Immediately thereafter, a two-bed-position attenuation-corrected examination was performed, with 6 min for the emission sequence and 6 min for the transmission sequence at each bed position. The images were usually reconstructed in a 256×256 matrix using ordered subset

Table 1. Characteristics of patients

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age</th>
<th>Sex</th>
<th>Histology</th>
<th>Neoadjuvant treatment</th>
<th>Pathologic stage</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>49</td>
<td>M</td>
<td>AD</td>
<td>C+R</td>
<td>T3N2</td>
<td>Partial response</td>
</tr>
<tr>
<td>2</td>
<td>52</td>
<td>M</td>
<td>SQ</td>
<td>C+R</td>
<td>T1N0</td>
<td>Partial response</td>
</tr>
<tr>
<td>3</td>
<td>36</td>
<td>M</td>
<td>AD</td>
<td>C+R</td>
<td>T2N0</td>
<td>Partial response</td>
</tr>
<tr>
<td>4</td>
<td>63</td>
<td>M</td>
<td>SQ</td>
<td>C+R</td>
<td>T1N0</td>
<td>Partial response</td>
</tr>
<tr>
<td>5</td>
<td>67</td>
<td>F</td>
<td>AD</td>
<td>C</td>
<td>T2N1</td>
<td>Partial response</td>
</tr>
<tr>
<td>6</td>
<td>70</td>
<td>M</td>
<td>SQ</td>
<td>C+R</td>
<td>T2N0</td>
<td>Partial response</td>
</tr>
<tr>
<td>7</td>
<td>74</td>
<td>M</td>
<td>SQ</td>
<td>C+R</td>
<td>T3N1</td>
<td>Partial response</td>
</tr>
<tr>
<td>8</td>
<td>64</td>
<td>M</td>
<td>SQ</td>
<td>C+R</td>
<td>T0N0</td>
<td>Partial response</td>
</tr>
<tr>
<td>9</td>
<td>65</td>
<td>M</td>
<td>SQ</td>
<td>C</td>
<td>T1N1</td>
<td>Partial response</td>
</tr>
<tr>
<td>10</td>
<td>64</td>
<td>M</td>
<td>AD</td>
<td>C+R</td>
<td>T1N3</td>
<td>Partial response</td>
</tr>
<tr>
<td>11</td>
<td>64</td>
<td>M</td>
<td>AD</td>
<td>C+R</td>
<td>T0N0</td>
<td>Partial response</td>
</tr>
<tr>
<td>12</td>
<td>63</td>
<td>M</td>
<td>SQ</td>
<td>C+R</td>
<td>T1N2</td>
<td>Partial response</td>
</tr>
<tr>
<td>13</td>
<td>59</td>
<td>F</td>
<td>AD</td>
<td>C+R</td>
<td>T2N1</td>
<td>No change</td>
</tr>
<tr>
<td>14</td>
<td>62</td>
<td>F</td>
<td>AD</td>
<td>C+R</td>
<td>T2N3</td>
<td>No change</td>
</tr>
<tr>
<td>15</td>
<td>53</td>
<td>M</td>
<td>AD</td>
<td>C+R</td>
<td>T1N1</td>
<td>No change</td>
</tr>
<tr>
<td>16</td>
<td>65</td>
<td>M</td>
<td>SQ</td>
<td>C</td>
<td>T1N2</td>
<td>No change</td>
</tr>
<tr>
<td>17</td>
<td>71</td>
<td>M</td>
<td>AD</td>
<td>C+R</td>
<td>T2N0</td>
<td>No change</td>
</tr>
<tr>
<td>18</td>
<td>68</td>
<td>F</td>
<td>AD</td>
<td>C</td>
<td>T2N1</td>
<td>No change</td>
</tr>
<tr>
<td>19</td>
<td>61</td>
<td>M</td>
<td>AD</td>
<td>C+R</td>
<td>T2N2</td>
<td>No change</td>
</tr>
<tr>
<td>20</td>
<td>66</td>
<td>M</td>
<td>AD</td>
<td>C+R</td>
<td>T4N2</td>
<td>No change</td>
</tr>
<tr>
<td>21</td>
<td>57</td>
<td>M</td>
<td>AD</td>
<td>C+R</td>
<td>T1N2</td>
<td>No change</td>
</tr>
<tr>
<td>22</td>
<td>65</td>
<td>M</td>
<td>AD</td>
<td>C+R</td>
<td>T2N2</td>
<td>No change</td>
</tr>
</tbody>
</table>

AD, adenocarcinoma; SQ, squamous cell carcinoma; C, chemotherapy; R, radiation therapy.
expectation maximization corresponding to a pixel size of 4×4 mm, with section spacing of 2.66 mm.

PET data were evaluated semiquantitatively on the basis of the contrast ratio (CR) obtained as reported previously. Briefly, the regions of interest (ROIs) were chosen in the nodules or lymph nodes and cerebellum. The highest activities in the tumor or lymph node ROI (T or L) and in the cerebellum ROI (C) were measured. The CR was calculated by T/C in each nodule or L/C in each lymph node as an index of FDG-uptake. The primary tumors or lymph nodes with a CR ≥0.25 were diagnosed as having a viable tumor as reported previously. The decrease in CR after neoadjuvant treatment was calculated using the following formula: CR after neoadjuvant treatment/CR before neoadjuvant treatment.

CT scanning and CT data analysis
Spiral CT was performed using a ProSeed SA (General Electric Health care, Milwaukee, Wisconsin, USA). The entire thorax was scanned in 1-cm-thick sections with maximal inspiration. World Health Organization (WHO) response criteria were used for efficacy analysis of the tumor. The criterion of CT definition for suspected metastasis of the lymph node was a short-axis diameter of 1 cm or larger. The area of the tumor was calculated as the multiplication of the longest diameter and the shortest diameter. The decrease in tumor area on CT after neoadjuvant treatment was calculated using the following formula: tumor area after neoadjuvant treatment/tumor area before neoadjuvant treatment.

Pathologic response
Pathologic response was defined according to the article of The Japan Lung Cancer Society. A major pathologic response was defined as a residual tumor less than one-third the size of the original tumor. A minor pathologic response was defined as residual tumor greater than or equal to one-third of the original tumor. The pathologic response was determined by comparing the ratios of FDG-uptake and tumor area on CT before and after neoadjuvant treatment in the 15 available patients.

Statistical analysis
True positive (TP), true negative (TN), false positive (FP) and false negative (FN) results of PET for residual tumor and lymph nodes were compared with the results of pathologic diagnosis. Sensitivity was calculated as TP/TP+FN, specificity as TN/TN+FP, positive predictive values (PPV) as TP/TP+FP, negative predictive values (NPV) as TN/TN+FN and accuracy as TP+TN/total. The differences between major pathologic response and minor pathologic response of the tumor by FDG-uptake and size on CT were examined by the Mann-Whitney U test. The data obtained by FDG-PET and CT were compared by the chi-squared test. The data were considered statistically significant at p<0.05. All values are expressed as the mean±SD.

Results
Detection of residual viable tumor at the primary site
While the effects of neoadjuvant treatment determined by CT were partial response in 12 and no change in 10 (Table 1), pathologic examination of the resected tumor showed that there were no viable cells in two patients. The results of the correlation between FDG-PET, CT and viable tumor cells are shown in Table 2. There were 16 patients with TP, four with FN and two with FP results by FDG-PET, 20 patients with TP and two patients with FP results by CT. There were no significant differences in the results of FDG-PET and CT.

Lymph node staging with PET and CT
A comparison of clinical (after neoadjuvant treatment) and pathologic lymph node status determined by FDG-PET and CT is shown in Table 3. FDG-PET and CT accurately predicted nodal status in 11 (50%) and 10 patients (45%), respectively. A comparison of clinical and pathologic node status in N1, N2 and N3 stations determined by FDG-PET and CT is shown in Table 4. Sensitivity, specificity, PPV, NPV and accuracy of FDG-PET and CT are summarized in Tables 5 and 6. PPV by FDG-PET (0.29) was significantly lower than that by CT (0.64) (p=0.04) in the N2 lymph node stations. However, there were no significant differences in the other results of FDG-PET and CT.
Pathologic response

In the 15 patients who underwent FDG-PET before and after neoadjuvant treatment, the ratios of FDG-uptake before and after neoadjuvant treatment in the major pathologic response patients (0.34±0.19) were significantly lower than those in the minor response patients (0.73±0.10)(p=0.003)(Fig. 1A). The ratios of tumor size on CT before and after neoadjuvant treatment in the major pathologic response patients (0.39±0.15) were also significantly lower than those in the minor pathologic response group (0.78±0.25)(p=0.009) (Fig. 1B). There was no significant difference in the ability of FDG-uptake or tumor size on CT to predict pathologic response.
FDG-PET after Neoadjuvant Treatment of Non-small Cell Lung Cancer

Discussion

Surgical resection has limited success in curing locally advanced non-small cell lung cancer. Recently, combined modality treatment for locally advanced non-small cell lung cancer has been performed. However, accurate staging of lung cancer is still difficult after neoadjuvant treatment. FDG-PET, which does not use the criterion of size, might be more accurate for detecting the actual presence of tumor in the lymph nodes than CT. In mediastinal lymph node staging of lung cancer without neoadjuvant treatment, sensitivity and specificity are reported to be 0.71-0.91 and 0.67-0.94, respectively. Several studies have shown good results for FDG-PET for the staging of lung cancer, even in patients who had received neoadjuvant treatment. Akhurst et al. reported that FDG-PET could accurately detect residual viable primary tumor, and Cerfolio et al. showed that FDG-PET had a higher PPV and NPV than CT for detecting residual tumor and paratracheal lymph nodes in patients who had received preoperative chemotherapy. On the other hand, Port et al. reported that FDG-PET did not accurately predict nodal stage after neoadjuvant treatment.

The current study showed that FDG-PET had a low PPV (0.29) when diagnosing mediastinal lymph nodes after neoadjuvant treatment. There were 20 FP lymph nodes (28%) among the 72 N2 lymph nodes. This poor result is thought to be due to inflammatory lesions with invasion of macrophages and lymphocytes in the lymph nodes caused by chemotherapy or radiation therapy. These lesions may be responsible for the increased uptake of FDG and the FP findings reported previously. Port et al. showed that FDG-PET did not reliably predict pathologic response to preoperative chemotherapy in non-small cell lung cancer. However, the current study demonstrates that the FDG-uptake of the primary tumor before and after neoadjuvant treatment was a good predictor of pathologic response of the tumor. We defined a major pathologic response as ‘residual tumor less than one-third the size of the primary tumor’. According to this definition, FDG-uptake could reflect the pathologic response of the primary tumor.

Lymph node downstaging of locally advanced non-small cell lung cancer by neoadjuvant treatment correlates with long-term survival. FDG-PET did not offer any advantages over CT in the mediastinal lymph node and could not predict the lymph node downstaging of non-small cell lung cancer patients who received neoadjuvant treatment. Therefore, surgical intervention such as endoscopic biopsy or mediastinoscopy will be needed for accurate staging, since surgery after induction treatment is beneficial only in patients with pathologic downstaging.

Fig. 1.

A: Distributions of the ratios of FDG-uptake in patients with a major and a minor pathologic response. The ratios of FDG-uptake in patients with a major pathologic response (0.34±0.19) were significantly lower than those in the group with minor pathologic response (0.73±0.10) (p=0.003).

B: Distributions of the ratios of the size in patients with a major and a minor pathologic response. The ratios of tumor size in patients with a major pathologic response (0.39±0.15) were also significantly lower than those in the group with minor pathologic response (0.78±0.25) (p=0.009).
References

