The Effects of Na Movement on Surgical Myocardial Protection: The Role of the Na⁺-H⁺ Exchange System and Na-Channel in the Development of Ischemia and Reperfusion Injury

Ke-Xiang Liu, MD,¹ Fumio Yamamoto, MD, ² Hiroshi Yamamoto, MD, ²
Tiance Wang, MD, ¹ Zhicheng Zhu, MD, ¹ Rihao Xu, MD, ¹ and Shudong Zhang ¹

Objectives: We investigated whether the Na⁺-H⁺ exchange inhibitor, HOE642 (Hoe), and/or the Na channel blocker, mexiletine (Mex), enhance a cardioprotective effect on St. Thomas’ Hospital cardioplegic solution (STS) to clarify the mechanism by which intracellular Na⁺ is accumulated after cardioplegic arrest.

Materials and Methods: Isolated working rat hearts were perfused with Krebs-Henseleit bicarbonate buffer (KHBB). The hearts were then arrested with STS and subjected to normothermic global ischemia (30 min). This was followed by Langendorff reperfusion (15 min) and then a working reperfusion (20 min). In study A, we added Hoe (5, 10, and 20 µM), Mex (70 µM), or a combination of Hoe (20 µM) and Mex (70 µM), to STS. In study B, we added Hoe (20 µM), Mex (70 µM), or a combination of Hoe (20 µM) and Mex (70 µM) to KHBB during the first 3 min of Langendorff reperfusion.

Results: In study A, the addition of Hoe (10 and 20 µM) to STS showed a significantly greater postischemic recovery of cardiac output compared to the control group [63.1±5.7% (10 µM), 62.7±4.7% (20 µM), and 55.5±4.6% (control), respectively]. The postischemic recovery of cardiac output was significantly greater in the group of the combined addition (Hoe and Mex) to STS than that in the control, 20 µM Hoe, 70 µM Mex groups [70.3±3.7% (Hoe and Mex), 55.5±4.6% (control), 62.7±4.7% (Hoe 20 µM), and 60.2±4.7% (Mex 70 µM), respectively]. The myocardial water content in the postischemic period was 565.1±29.1, 525.8±2.9, 509.4±19.6, and 532.2±20.1; it was 497.3±9.1 mL/100 g dry weight in the control; and 10 µM Hoe, 20 µM Hoe, and 70 µM Mex in the combined use groups. In study B, there was no significant difference in the postischemic recovery of cardiac output in all experimental groups.

Conclusion: The combined use of the Na⁺-H⁺ exchange inhibitor and Na⁺ channel blocker during cardioplegia may achieve a superior cardioprotective effect on myocardial damage because of ischemia and reperfusion. (Ann Thorac Cardiovasc Surg 2007; 13: 301–307)

Key words: HOE642, mexiletine, ischemia and reperfusion injury, cardioplegia

Introduction

Preoperative myocardial dysfunction is still one of the major causes of operative morbidity and mortality in patients undergoing cardiovascular operations, despite remarkable improvements in cardioprotective techniques. Therefore further improvements of protective techniques are still required. The mechanisms responsible for myocardial damage resulting from ischemia and reperfusion...
have been widely studied in the field of basic and clinical research. Extensive experimental studies provide evidence that suggest that a rise in cytosolic free Ca²⁺ concentration during ischemia and reperfusion contributes to the development of cell damage during ischemia and reperfusion.¹¹²) A major pathway of increased Ca²⁺ entry is through the Na⁺-Ca²⁺ exchange secondary to a rise in intracellular Na⁺ concentration.³–⁵) Therefore the prevention of Na⁺ accumulation may exert beneficial effects for myocardial protection against ischemia and reperfusion injury in terms of intracellular Ca²⁺-overload. The mechanism of intracellular Na⁺ accumulation during ischemia and reperfusion has not been completely clarified. Several pathways for an increase in intracellular Na⁺ have been reported. The Na⁺-H⁺ exchanger has been shown to play an important role for the intracellular Na⁺ accumulation during ischemia and reperfusion.⁶,⁷) Other mechanisms such as the noninactivating Na⁺ channels and the increase of permeability of cell membrane during ischemia and reperfusion have also been suggested to contribute to the intracellular Na⁺ accumulation.⁸) The purpose of this study was to assess whether an Na⁺-H⁺ exchange inhibitor [HOE642 (Hoe); Hoechst, Germany] and an Na⁺ channel blocker [mexiletine (Mex); Boehringer Ingelheim, Japan] contribute to enhance the cardioprotective effects of St. Thomas’ Hospital cardioplegic solution (STS).

Materials and Methods

Animals
Male Sprague-Dawley rats (280 to 330 g body weight) were used in all studies. The animals received human care in compliance with the Principles of Laboratory Care formulated by the National Society for Medical Research and the Guide for the Care and Use of Laboratory Animals prepared by the National Academy of Sciences and published by the National Institutes of Health (NIH publication No. 85-23, revised 1985).

Experimental model
An isolated working rat heart preparation was used for this study. The rat was anesthetized with ether. It was rapidly excised after heparinization and placed in a cold Krebs-Henseleit bicarbonate buffer (KHBB) solution. After cannulation of the aorta, the heart was perfused with KHBB at a perfusion pressure of 100 cmH₂O in Langendorff mode for a 5-min stabilization period. During this stabilization period, the pulmonary artery was cut, and through the pulmonary vein the left atrium was cannulated. The heart was then converted to working mode perfusion, and preischemic cardiac function (aortic flow, coronary flow, and heart rate) was measured during four 5-min periods of working mode perfusion. It was then arrested with a 3-min infusion of STS at a perfusion pressure of 60 cmH₂O and subjected to 30 min of normothermic (37°C) global ischemia. This was followed by a 15-min Langendorff reperfusion and then a 20-min working reperfusion. The postischemic cardiac function was measured as a preischemic method. Throughout the experiment, Langendorff reservoir, lung, elastic chamber, heart chamber, and atrial chamber were maintained at 37°C by temperature-regulated pumps (Fig. 1).

Perfusion medium
The perfusion medium was KHBB containing (mM) NaCl 118.5, NaHCO₃ 25.0, KCl 4.7, MgSO₄ 1.2, KH₂PO₄ 1.2, CaCl₂ 2.5, and glucose 10.0 at pH of 7.4. The buffer was filtered (5 µm pore size) before use and was continuously gassed with 95% oxygen and 5% carbon dioxide. The cardioplegic solution was STS containing (mM) NaCl 110.0, KCl 16.0, MgCl₂ 16.0, CaCl₂ 1.2, and NaHCO₃ 10.0 at pH 7.8, which has osmolarity of 324 mOsm/L. The cardioplegic solution was filtered (5 µm pore size) before use.

Experimental protocol
In study A, the animals were divided into six groups (n = 6 rats/group). In study B, the animals were divided into four groups (n = 6 rats/group). Hoe was used as an Na⁺-H⁺ exchange inhibitor. Mex was used as an Na⁺ channel blocker. In study A, 5 µM HOE642 (group H5), 10 µM Hoe (group H10), 20 µM Hoe (group H20), 70 µM Mex (group M), or a combination of 20 µM Hoe and 70 µM Mex (group HM) was given to STS (Fig. 2). In study B, 20 µM Hoe (group H-R), 70 µM Mex (group M-R), or a combination of Hoe 20 and Mex 70 µM (group HM-R) was given to reperfusate during the first 3 min of the Langendorff reperfusion period (Fig. 2).

Measurement
Aortic flow was measured with an electromagnetic flow-meter (Nihon Kohden MFV-3200; Japan) installed between the elastic chamber and the top of the lung. Coronary flow was measured from the effluent of the right heart. Cardiac output was derived from the sum of aortic flow and coronary flow. Aortic pressure was measured by connecting a fluid-filled tube from a side arm of the cannula to a pressure transducer. Heart rate was calculat-
ed from recorded aortic pressure waves (Fukudenshi AU-5500N; Japan). At the end of the reperfusion period, the heart was removed from the perfusion apparatus; the atria and great vessels were discarded. The remaining myocardium was weighed immediately before and after 24 h of desiccation at 100°C.

Expression of results
Postischemic cardiac function was assessed and expressed as a percentage of the preischemic value. Myocardial water content was calculated from the difference between wet and dry weights and expressed as mL per 100 g dry weight.

Statistical analysis
Data were expressed as means ± standard deviation (SD). A one-way analysis of variance (ANOVA) was used in each study, and the Bonferroni approach was used for individual comparisons when a significant difference was found. The values of P<0.05 were considered to be significant.

Results
Study A
There were no significant differences between the groups in the baseline values of preischemic cardiac function (Table 1). The postischemic recovery of cardiac function and myocardial water content after reperfusion are shown in Table 2. The postischemic recovery of aortic flow, coronary flow, or cardiac output was significantly greater in the H10 and H20 groups than in the control group. The percent recoveries of aortic output were improved from 55.5±4.6% to 63.1±5.7% and 55.5±4.6% to 62.7±4.7% by Hoe 10 µM and 20 µM, respectively (P<0.05). The postischemic recovery of cardiac output was significantly greater in the group of the combined addition (Hoe and Mex) to STS than in the control, 20 µM Hoe, 70 µM Mex groups [70.3±3.7% (Hoe and Mex), 55.5±4.6% (control), 62.7±4.7% (Hoe 20 µM), and 60.2±4.7% (Mex 70 µM), P<0.05 respectively]. Although the recoveries of cardiac function showed a better tendency in the H5 and M groups than in the control group, no significant differ-
tracellular massive accumulation of Ca\(^{2+}\) was observed and reperfusion have been extensively studied. Since in-

Study B
There were no significant differences between the groups at baseline values in the preischemic cardiac function (Table 3). There was no significant difference between the groups in terms of the postischemic recovery of aortic flow, coronary flow, cardiac output, or heart rate (Table 4). There was no significant difference between the groups in terms of myocardial water content (Table 4).

Discussion
The mechanisms of myocardial injury during ischemia and reperfusion have been extensively studied. Since intracellular massive accumulation of Ca\(^{2+}\) was observed during reperfusion, it has been proposed that intracellular Ca\(^{2+}\) overload may be a major cause of myocardial cellular damage.\(^1,12\) However, the mechanism of the massive Ca\(^{2+}\) influx into the cytosol has not been completely clear. The hypothesis that increased intracellular Na\(^{+}\) accumulation during ischemia and reperfusion may contribute to excessive Ca\(^{2+}\) uptake by the Na\(^{+}\)-Ca\(^{2+}\) exchanger has been widely accepted.\(^3-5\) Several studies have demonstrated that the inhibition of Na\(^{+}\) influx pathways reduced Na\(^{+}\) accumulation and contributed to better functional recovery after reperfusion.\(^7-10\) It has been considered that Na\(^{+}\) accumulation during ischemia is one of the major determinants of ischemia and reperfusion injury. Some studies suggested that he inhibition of intracellular Na\(^{+}\) accumulation has become a key point to reduce myocardial ischemia and reperfusion injury.\(^5,7,9\) The precise mechanism responsible for intracellular Na\(^{+}\) accumulation during ischemia is not yet clear, but it is likely that both Na\(^{+}\)-H\(^{+}\) exchange and noninactivating Na\(^{+}\) channels contribute to the Na\(^{+}\) accumulation.\(^8,11,12\) Therefore the present study was designed to investigate whether the Na\(^{+}\)-H\(^{+}\) exchange inhibitor, Hoe, and/or Na\(^{+}\) channel block-

Table 1. Preischemic cardiac function in hearts arrested with St. Thomas’ Hospital cardioplegic solution containing various concentrations of HOE642 and/or mexiletine

<table>
<thead>
<tr>
<th>Group</th>
<th>C</th>
<th>H5</th>
<th>H10</th>
<th>H20</th>
<th>M</th>
<th>HM</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF (mL/min)</td>
<td>78.3±3.6</td>
<td>77.8±3.2</td>
<td>79.4±4.1</td>
<td>77.8±6.7</td>
<td>77.3±3.6</td>
<td>78.0±1.6</td>
</tr>
<tr>
<td>CF (mL/min)</td>
<td>18.9±0.8</td>
<td>19.0±1.7</td>
<td>18.4±1.2</td>
<td>18.4±0.4</td>
<td>19.7±1.5</td>
<td>18.9±1.2</td>
</tr>
<tr>
<td>CO (mL/min)</td>
<td>97.1±4.1</td>
<td>96.8±4.2</td>
<td>97.6±5.2</td>
<td>96.7±7.1</td>
<td>96.7±4.5</td>
<td>96.5±3.3</td>
</tr>
<tr>
<td>HR (beats/min)</td>
<td>329.4±24.8</td>
<td>327.0±32.2</td>
<td>326.9±32.2</td>
<td>322.9±25.7</td>
<td>321.6±29.5</td>
<td>308.6±19.3</td>
</tr>
</tbody>
</table>

Values are expressed as means ± SD. C, control; H5, 5 \(\mu\)M HOE642; H10, 10 \(\mu\)M HOE642; H20, 20 \(\mu\)M HOE642; M, 70 \(\mu\)M mexiletine; HM, combined use of 20 \(\mu\)M HOE642 and 70 \(\mu\)M mexiletine. AF, aortic flow; CF, coronary flow; CO, cardiac output; HR, heart rate. \(n=6\)/group.

Table 2. Postischemic recoveries of cardiac function in hearts arrested with St. Thomas’ Hospital cardioplegic solution containing various concentrations of HOE642 and/or mexiletine

<table>
<thead>
<tr>
<th>Group</th>
<th>C</th>
<th>H5</th>
<th>H10</th>
<th>H20</th>
<th>M</th>
<th>HM</th>
</tr>
</thead>
<tbody>
<tr>
<td>% AF</td>
<td>49.9±5.4</td>
<td>53.2±3.9</td>
<td>58.0±5.6</td>
<td>57.2±5.0</td>
<td>54.4±5.2</td>
<td>64.9±3.6†‡</td>
</tr>
<tr>
<td>% CF</td>
<td>78.9±1.5</td>
<td>82.8±4.1</td>
<td>85.2±5.6</td>
<td>85.7±4.9</td>
<td>83.4±3.8</td>
<td>92.6±5.5†‡</td>
</tr>
<tr>
<td>% CO</td>
<td>55.5±4.6</td>
<td>58.8±3.4</td>
<td>63.1±5.7</td>
<td>62.7±4.7</td>
<td>60.2±4.7</td>
<td>70.3±3.7‡</td>
</tr>
<tr>
<td>% HR</td>
<td>99.5±3.9</td>
<td>97.4±2.3</td>
<td>100.9±1.3</td>
<td>102.8±11.3</td>
<td>98.8±2.5</td>
<td>97.3±4.2</td>
</tr>
<tr>
<td>WC (mL/100 g dry wt)</td>
<td>565.1±29.1</td>
<td>545.5±27.5</td>
<td>525.8±29.9</td>
<td>509.4±19.6</td>
<td>532.2±20.1</td>
<td>497.3±9.1‡</td>
</tr>
</tbody>
</table>

Values are expressed as means ± SD. †, P<0.05 vs. C; ‡, P<0.05 vs. group H20; †, P<0.05 vs. group M. C, control; H5, 5 \(\mu\)M HOE642; H10, 10 \(\mu\)M HOE642; H20, 20 \(\mu\)M HOE642; M, 70 \(\mu\)M mexiletine; HM, combined use of 20 \(\mu\)M HOE642 and 70 \(\mu\)M mexiletine. % AF, percent recovery of aortic flow; % CF, percent recovery of coronary flow; % CO, percent recovery of cardiac output; % HR, percent recovery of heart rate. WC, myocardial water content (mL/100 g dry wt). \(n=6\)/group.
The Effects of Na Movement on Surgical Myocardial Protection

Hoe is a highly selective and specific inhibitor of type 1 Na⁺-H⁺ exchanger. Many studies have revealed that it can improve myocardial injury because of ischemia and reperfusion insult by reducing intracellular Na⁺ accumulation.13,14) However, the beneficial effect of Hoe added to STS has not been well investigated, and the optimal concentration of it during cardioplegia is still unclear. In our studies with isolated working rat heart preparation, the addition of 10–20 µM Hoe to STS improved postischemic recovery of cardiac function and resulted in less myocardial water content. The role of the Na⁺-H⁺ exchanger in Na⁺ loading during ischemia or reperfusion remains controversial. Some researchers have hypothesized that Na⁺ accumulation occurs mainly during ischemia, and Na⁺ influx through the Na⁺-H⁺ exchange system during reperfusion may be markedly smaller than Na⁺ efflux through Na⁺ efflux pathways.15,16) Other studies, however, have shown that Na⁺ accumulation results mainly from reperfusion because low extracellular pH would inhibit the Na⁺-H⁺ exchange system during ischemia.17) In the present study, the Na⁺-H⁺ exchange inhibitor administered during cardioplegia enhanced a cardioprotective effect, but it showed no beneficial effect when administered during reperfusion. Therefore our data suggest that intracellular Na⁺ accumulation occurs mainly through the Na⁺-H⁺ exchange system during ischemia, but not during reperfusion.

Membrane-stabilization may be another effective way to prevent intracellular Na⁺ accumulation during ischemia and reperfusion. Many studies provide evidence that demonstrates the beneficial effects of several class 1b antiarrhythmic agents on myocardial ischemia and reperfusion injury.18–20) The underlying mechanism of these beneficial effects was postulated to be attributable to the prevention of Na⁺ overload by not only blocking the Na⁺ channel, but also membrane stabilization. Mex, an Na⁺ channel blockade classified as a class 1b antiarrhythmic agent, is known to exert antiarrhythmic effects in experimental animal models and in patients suffering from arrhythmia. Mex has also been shown to inhibit intracellular Na⁺ accumulation by the blocking of Na⁺ current and keeping membrane stabilization, and its addition to a perfusate at a dose of 10–100 µM significantly improves cardiac function after reperfusion.18,20) According to these reports, we have employed 70 µM as an effective dose of mexiletine in the present study. When

Table 3. Preischemic cardiac function in hearts reperfused with KHBB solution containing HOE642 and/or mexiletine

<table>
<thead>
<tr>
<th>Group</th>
<th>C</th>
<th>H-R</th>
<th>M-R</th>
<th>HM-R</th>
</tr>
</thead>
<tbody>
<tr>
<td>AF (mL/min)</td>
<td>78.3±3.6</td>
<td>79.8±5.6</td>
<td>79.2±1.3</td>
<td>79.2±3.1</td>
</tr>
<tr>
<td>CF (mL/min)</td>
<td>18.8±0.8</td>
<td>19.0±1.6</td>
<td>19.1±1.1</td>
<td>19.1±1.5</td>
</tr>
<tr>
<td>CO (mL/min)</td>
<td>97.1±4.1</td>
<td>97.3±7.9</td>
<td>98.3±1.3</td>
<td>98.1±4.8</td>
</tr>
<tr>
<td>HR (mL/min)</td>
<td>329.4±24.8</td>
<td>317.6±41.1</td>
<td>323.8±15.1</td>
<td>314.8±10.7</td>
</tr>
</tbody>
</table>

Values are expressed as means±SD. C, control; H-R, 20 µM HOE642; M-R, 70 µM mexiletine; HM-R, combined use of 20 µM HOE642 and 70 µM mexiletine. AF, aortic flow; CF, coronary flow; CO, cardiac output; HR, heart rate. n = 6/group.

Table 4. Postischemic recoveries of cardiac function and myocardial water content in hearts reperfused with KHBB solution containing HOE642 and/or mexiletine

<table>
<thead>
<tr>
<th>Group</th>
<th>C</th>
<th>H-R</th>
<th>M-R</th>
<th>HM-R</th>
</tr>
</thead>
<tbody>
<tr>
<td>% AF</td>
<td>49.9±5.4</td>
<td>52.2±5.4</td>
<td>50.7±3.9</td>
<td>55.3±5.8</td>
</tr>
<tr>
<td>% CF</td>
<td>78.9±1.5</td>
<td>75.4±13.2</td>
<td>79.8±2.2</td>
<td>81.7±3.9</td>
</tr>
<tr>
<td>% CO</td>
<td>55.5±4.6</td>
<td>56.7±6.3</td>
<td>56.4±3.5</td>
<td>60.4±5.5</td>
</tr>
<tr>
<td>% HR</td>
<td>99.9±3.9</td>
<td>93.2±8.7</td>
<td>98.0±1.5</td>
<td>98.5±4.3</td>
</tr>
<tr>
<td>WC (mL/100 g dry wt)</td>
<td>565.1±29.1</td>
<td>566.6±24.9</td>
<td>551.0±14.1</td>
<td>540.3±12.2</td>
</tr>
</tbody>
</table>

Values are expressed as means±SD. C, control; H-R, 20 µM HOE642; M-R, 70 µM mexiletine; HM-R, combined use of 20 µM HOE642 and 70 µM mexiletine. % AF, percent recovery of aortic flow; % CF, percent recovery of coronary flow; % CO, percent recovery of cardiac output; % HR, percent recovery of heart rate; WC, myocardial water content (mL/100 g dry wt). n = 6/group.
added to STS, mex significantly reduced myocardial edema and improved the postischemic recovery of coronary flow, though it did not improve the postischemic recovery of aortic flow or cardiac output. This result means that mexiletine, when added to STS, could exert a cardioprotective effect even under the condition that the Na⁺ channel is inactivated by membrane depolarization with a high potassium (16 mM) cardioplegic solution, suggesting that the mexiletine effect may be exerted by a mechanism other than the Na⁺ channel blocking (e.g., membrane stabilization). When administered during reperfusion, Mex showed no significant cardioprotective effect in either cardiac function or myocardial water content, suggesting that mexiletine may not play an important role in the development of myocardial injury during reperfusion.

It has not been investigated whether the combined use of an Na⁺-H⁺ exchange inhibitor and an Na⁺ channel blockade efficiently enhance the cardioprotective effect of STS. In the present study, the combined use of Hoe (20 µM) and Mex (70 µM) showed beneficial effects on the postischemic recovery of cardiac function and myocardial water content when added to STS, but not on reperfusion medium. Also when added to STS, the combined use of HOE 642 (20 µM) and Mex (70 µM) achieved superior cardioprotective effects compared to the use of each drug alone. The mechanism of beneficial effects of the combined use cannot be fully explained solely in terms of intracellular Na⁺ accumulation during ischemia. Hoe, characterized by a highly selective and specific inhibitor of type 1 Na⁺-H⁺ exchanger, is known to locate on the plasma membrane, working to maintain the intracellular ionic homeostasis. Mex has been characterized by not only a blocking of Na⁺ current, but also by keeping membrane stabilization. Therefore a possible explanation to understand the mechanism responsible for the beneficial effects of a combined use of Hoe and Mex is that Mex may act as a strong membrane stabilizer in addition to the effect of Hoe during ischemia.

Conclusion

The addition of 10 to 20 µM Hoe to STS enhances its cardioprotective effect on myocardial injury because of normothermic ischemia and reperfusion. A combined use of the Na⁺-H⁺ exchange inhibitor (20 µM) and Na⁺ channel blockade (70 µM) during the cardioplegia may achieve superior cardioprotective effects compared to the use of each drug alone. When used during the reperfusion period, neither Na⁺-H⁺ exchange inhibitor nor Na⁺ channel blockade may have any cardioprotective effect on myocardial injury as a result of ischemia and reperfusion.

References


